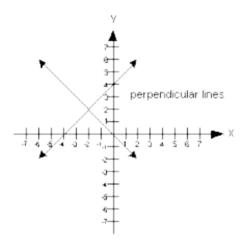


$$y = -5$$

This is a horizontal line, so its slope is 0.


1-7-Slope of Perpendicular Lines

A set of perpendicular lines always has 90° angle between them. Let us suppose we have two perpendicular lines l_1 and l_2 in the coordinate plane, inclined at angle θ_1 and θ_2 respectively with the x-axis, such that the given angles follow the external angle theorem as, $\theta_2 = \theta_1 + 90^\circ$.

Therefore, their slopes can be given as, $m_1 = \tan \theta_1$ $m_2 = \tan (\theta_1 + 90^\circ) = -\cot \theta_1$

$$\Rightarrow$$
 m₁ × m₂ = -1

Thus, the product of slopes of two perpendicular lines is equal to -1.

Example:

Find an equation for the line passes through the point (4,6),and Perpendicular to the line 4x+3y=12

Answer:

$$x=3$$
 , $Y=4$

$$4x+3y=12$$

$$3y = -4x + 12$$

$$Y=-4/3 x+4$$

$$m_1 = -4/3$$

$$m_2 = 3/4$$

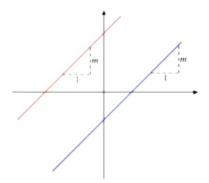
$$y-y_1 = m(x-x_1)$$

$$y-6 = 3/4(x-4)$$

$$y-3/4 x+3=0$$

1-8- Slope of parallel lines

A set of parallel lines always have an equal angle of inclination. Let us suppose we have two parallel lines l_1 and l_2 in the coordinate plane, inclined at angle θ_1 and θ_2 respectively with the x-axis, such that the, $\theta_2 = \theta_1$.


Therefore, their slopes can be given as,

$$\Rightarrow m_1 = m_2$$

جامعة تكريت كلية التربية للعلوم الصرفة قسم الفيزياء

Thus, the slopes of the two parallel lines are equal.

Example:

Find an equation for the line passes through the point (-2,2),and Parallel to the line 2x+y=4

Answer:

$$2x+y=4$$

$$X=2$$
 , $y=4$

$$m_1 = m_2$$

$$y = -2x + 4$$

$$m_1 = -2$$
 , $m_2 = -2$

$$y-y_1 = m(x-x_1)$$

$$y - 2 = -2(x - (-2))$$

$$y + 2x + 2 = 0$$

2- Formula for Distance Between Two Points:

The formula for the distance, dd, between two points whose coordinates are (x1,y1) and (x2,y2) is:

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^1)^2}$$

جامعة تكريت كلية التربية للعلوم الصرفة قسم الفيزياء

This is called the Distance Formula.

Example:

Find the distance between the two points with coordinates given as, A = (1, 2) and B = (1, 5).

Solution:

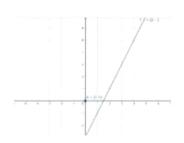
The distance between two points using coordinates can be given as,

$$d = \sqrt{(x^2 - x^1)^2 + (y^2 - y^2)^2},$$

where (x1,y1) and (x2,y2) are the coordinates of the two points.

$$\Rightarrow$$
 d = $\sqrt{(1-1)^2 + (5-2)^2}$

$$\Rightarrow$$
 d = 3 units


- 2-1- Finding the Distance Between a Point and Line Given the Point and the Equation of the Line
- Step 1: Identify the point and the equation of the given line.
- Step 2: Represent the line as ax+by+c=0 and the point as (x1,y1)
- Step 3: Find the distance between the point and line using the formula

$$d=|ax_1+by_1+c| /\sqrt{(a^2+b^2)}$$

where a, b, and c are real numbers. Both a and b

Example:

The line y=2x-3 is shown on the graph below. Determine the distance between the origin and the line.

Step 1: Identify the point and the equation of the given line.

Point: Origin A(0,0), Line: y=2x-3

Step 2: Represent the line as ax+by+c=0 and the point as (x1,y1). -2x+y+3=0

$$a=-2$$
 , $b=1$, $c=3$

Step 3: Find the distance between the point and line using the formula $d=|ax_1+by_1+c|/\sqrt{(a^2+b^2)}|$

, where a, b, and c are real numbers. Both a and b, cannot be zero.

$$d=|-2\times0+1\times0+3|/\sqrt{(-2)^2+1^2}$$

$$d=|0+0+3|/\sqrt{4+1}$$

$$d=3\sqrt{5}=1.34$$

The distance between the line and the origin is 1.34 units.

Example

Find the distance between the point (-5,2) and 2y=-x-12.

Step 1: Identify the point and the equation of the given line.

Point: A(-5,2)

Line:2y = -x - 1

Step 2: Represent the line as ax+by+c=0 and the point as (x1,y1).

$$x+2y+1=0$$

 $a=1$, $b=2$, $c=1$

Step 3: Find the distance between the point and line using the formula

$$d=|ax_1+by_1+c|/\sqrt{(a^2+b^2)}$$

Where a, b, and c are real numbers. Both a and b cannot be zero.

$$d=|1\times-5+2\times2+1| / \sqrt{1^2+2^2}$$

$$d=|-5+4+1| / \sqrt{1+4}$$

$$d=0 / \sqrt{5}=0$$

The distance between the line and the point is 0 units