:Definitions 1-10

An element x in a ring R is called a right zero divisor it there exists a non-zero element $y \in R$ Such that $y \cdot x = 0$

Also, we can similarly define left zero divisor if x. y = 0

An element is called a zero divisor if it is both right and left zero divisor

:Definition: 11-1

A ring (R, +, \bullet) called divisors of Zero if there ,exists tow non-Zero elements a, b \in R

That $a \cdot b = 0$

Examples: $(Z4,+4,.4) 2 \in Z4$ and 2.42 = 0 ($Z6,+6,.6), 2,3 \in Z6$

 $0 = 3 \cdot 2 \Longrightarrow$

:Proposition

A ring (R, +, \bullet) is without zero divisors if and . only if the canselation low hold

:Proof 11

Let $(R, +, \bullet)$ is a ring without zero divisors. and , let a, b, c $\in R$

such that $a \neq 0$ and $a \cdot b = a \cdot c \Longrightarrow a \cdot b - a - c = 0$ $<math>\Longrightarrow a \cdot (b - c) = 0$

b - c = 0 (because a \neq 0). Thus b = c \Longrightarrow ; Conversely

let a ,b \in R and a \neq 0 to , such that a . b = 0

a.b = a.0 \Longrightarrow b = 0 (By canselation low) \Longrightarrow

And by same way we can show that if $b \neq 0 \implies$. we get a = 0

. Thus (R, +, •) is aring without zero divisors

Corollary .1.13

let (R, +, •) be a ring with identity and without .zero divisors

If $a^2 = a$, where $a \in R$, then either a = 0 or a = 1:Proof

Suppose $a \ne 0$ $a^2 = a \Longrightarrow a^2 - a = 0 \Longrightarrow a (a - 1) = 0$

. Since $a \neq 0$, then a - 1 = 0

- . Hence a = 1 And if $a \ne 1$, then $a 1 \ne 0$
- . Thus a = 0

:Definition:1-14

A ring (R, *, °) is called an integral domain if R is a commutative ring with identity and without zero .divisors

Definition: A commutative ring with :1.15 . identity

is called a field if each now zero (. , + , F) element has an inverse under multiplication . (invertible)

Note: each field has no zero divisors 1-16:

. Examples $(Q^*, +, .)$ and $(R^*, +, .)$ are Fields