:Definitions 1-3

Airing (R, *, \circ) is called a belian . ring if (R, (1) . \circ) is a belian semi-group

Airing (R, \circ) is called a ring with identity if (2) there exists an identity element $E \in R$, such that a $\cdot \circ e = e \circ a = a$, $\forall a \in R$

A ring of invertible elements is a ring $(R, *, \circ)$ (3) .if (R, *) is a group of invertible elements

I.e. each element of (R, \circ) has a unique inverse. And is denoted by $(R^*, *, \circ)$

Examples (R^* , + , •) is a ring of invertible 1-4 4 element (R , + , •) , (Z , + , .) , (Z , + , .) , (Q , + , .)

.Theorem : Each ring has a unique identity

Proof: Suppose (R , *, \circ) is a ring has identity e . ` and e

Hence \forall $a \in \mathbb{R}$, we get $a \circ e = a$ and $a \circ \grave{e} = a \therefore a \circ e = a \circ \grave{e}$

Thus R has a unique identity

Theorem: Each non-zero element in the ring has a .unique inverse

. Proof: Let $(R, *, \circ)$ be a let $0 \neq a \in R$

: Suppose a - 1, $a \in \mathbb{R}$ are inverse of a implies

$$a \circ \dot{a} = e \text{ and } a \circ \dot{a} \text{ So } a \circ a - 1 = a \circ \dot{a} \ a - 1 \circ (a \circ a) - 1) = a - 1 \circ (a \circ \dot{a}) (a - 1 \circ a) \circ a - 1 = (a - 1 \circ a) \circ \dot{a}$$

$$e \circ a - 1 = e \circ a = -1 = a \Longrightarrow$$

.Thus a has a unique inverse