(اشتقاق الدوال) 5.7 Differentiation of the Functions

Definition 5.39:

1- Let $D \subseteq R$ and $p \in D$ and let

$$F(x) = \frac{f(x) - f(p)}{x - p}$$
, (F is a function defined on $D/\{p\}$)

If $\lim_{x\to p} F(x)$ exists, then f is differentiable at p and

$$\lim_{x\to p} F(x) = \lim_{x\to p} \frac{f(x)-f(p)}{x-p} = f'(p),$$

where f'(p) is the derivative of f at p.

- **2-** If f is differentiable at each point $x \in D$, then we say that f is differentiable on D and f'(x) is denoted the derivative function of f on D.
- **3-** Then, f'(p) is a real number, f'(x) is a function.

Example 5.40:

1- Let $f(x) = c, \forall x \in R$, then,

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} \frac{c - c}{x - p} = 0$$

$$\Rightarrow f'(x) = 0, \forall x \in R.$$

2- Assume that

$$f(x) = x, \forall x \in R ,$$

then,

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} \frac{x - p}{x - p} = 1.$$

$$\implies f'(x) = 1, \forall x \in R.$$

3- Suppose that

$$f(x) = x^2, \forall x \in R$$

then,

$$f(x) = x^2, \forall x \in R,$$
en,
$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} = \lim_{x \to p} \frac{x^2 - p^2}{x - p}$$

$$= \lim_{x \to p} (x + p) = 2p.$$
Herefore
$$f'(p) = 2p.$$

$$\Rightarrow f'(x) = 2x, \forall x \in R. \blacksquare$$
efinition 5.41: Let $f: D \to R$ be a function and D be an open interval, a spection f is said to be differentiable at $x \in D$, if for any sequence

Therefore

$$f'(p) = 2p.$$

$$\Rightarrow f'(x) = 2x, \forall x \in R.$$

Definition 5.41: Let $f: D \to R$ be a function and D be an open interval, a function f is said to be differentiable at $x_0 \in D$, if for any sequence $< x^n >$ in D such that

$$x_n \rightarrow x_0, (i.e., x_n \neq x_0),$$

then,

$$\frac{f(x_n) - f(x_0)}{x_n - x_0}$$

converges to the constant number $\alpha = \alpha(x_0).i.e.$

$$\lim_{x_n \to x_0} \frac{f(x_n) - f(x_0)}{x_n - x_0} = \alpha(x_0) = \alpha = f'(x_0) ,$$

or

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \alpha(x_0) = f'(x_0).$$

Theorem 5.42: If f is differentiable function at $x_0 \in D$, then f is kglestu Yhusg Msusot continuous at x_0 .

Proof:

If f is differentiable at $x_0 \in D$, then,

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

$$\Rightarrow \lim_{x \to x_0} (x - x_0) f'(x_0) = \lim_{x \to x_0} (f(x) - f(x_0)).$$

$$\Rightarrow \lim_{x \to x_0} [f(x) - f(x_0)] = 0.$$

$$\Rightarrow \lim_{x \to x_0} f(x) = f(x_0).$$

$$\Rightarrow f \text{ is continuous at } x_0. \blacksquare$$

Remark 5.43: The converse of above theorem is not true. Now, consider the following example.

Example 5.44:

Let $f: R \to R$ be a function such that

$$f(x) = |x| \ \forall x \in R,$$

 \Rightarrow f is continuous on R (why..?)

 \Rightarrow f is continuous at $x_0 = 0$. (why..?)

But f is not differentiable at $x_0 = 0$, (why..?)

Since

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{|x| - 0}{x - 0} = \lim_{x \to 0} \frac{|x|}{x}$$

$$= \lim_{x \to 0} \left\{ \frac{\frac{x}{x}}{x}, \ x > 0 \right.$$

 $\implies f'(0)$ does not exist.

 \Rightarrow f is not differentiable at $x_0 = 0$.

Theorem 5.46: If $f: D \to R$ and $g: D \to R$ are two differentiable functions at $x_0 \in D$ and $c \in R$, then:

Huug Mansol

1- f + g is differentiable at x_0 , and

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

2- f - g is differentiable at x_0 , and

$$(f-g)'(x_0) = f'(x_0) - g'(x_0)$$
.

3- f. g is differentiable at x_0 , and

$$(f.g)'(x_0) = f'(x_0).g'(x_0).$$

4- C. f is differentiable at x_0 , and

$$(C.f)'^{(x_0)} = C.f'(x_0).$$

5- If $g(x_0) \neq 0$, then $\frac{f}{g}$ is differentiable at x_0 , and

$$\left(\frac{f}{g}\right)'(x_0) = \frac{g(x_0)f'(x_0) - f(x_0)g'(x_0)}{[g(x_0)]^2}$$

6- Also, $\frac{1}{g}$ is differentiable at x_0 , and

$$\left(\frac{1}{g}\right)'(x_0) = \frac{-g'x_0)}{[g(x_0)]^2}$$
.

(قاعدة السلسلة) 5.7.1 The Chain Rule

Theorem 5.47: Let J and L be two open intervals in R and $f: J \to R$ and $g: L \to R$ be two functions such that $f(J) \subset L$. If f is differentiable at $x_0 \in J$ and g is differentiable at $f(x_0) \in L$, then $g \circ f$ is differentiable at $x_0 \in J$ and then,

$$(g \circ f)'(x_0) = g'(f(x_0).f'(x_0))$$

Proof:

Let
$$h = g \circ f: J \to R, x_0 \in J$$
.

$$h'(x_0) = \lim_{x \to x_0} \frac{(g \circ f)(x) - (g \circ f)(x_0)}{x - x_0}.$$

$$h'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} \cdot \frac{f(x) - f(x_0)}{f(x) - f(x_0)}.$$

$$h'(x_0) = \lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{f(x) - f(x_0)} \cdot \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}.$$

$$= g'(f(x_0)) \cdot f'(x_0).$$

$$\Rightarrow (g \circ f)'(x_0) = g'(f(x_0) \cdot f'(x_0).$$

(مبرهنة الدالة العكسية Theorem 5.48 (The Invers Function Theorem

Let $f: D \to R$ be a one-to-one function and differentiable at $x_0 \in D$ such that $f'(x_0) \neq 0$, then $f^{-1}: f(D) \to D$ is differentiable at $f(x_0)$ and

$$(f^{-1})(f(x_0)) = \frac{1}{f'(x_0)}$$
.

Proof: Check...?

(مبرهنة القيمة الوسطى) 5.7.2 Mean Value Theorem

Theorem 5.49: Let $f: D \to R$ be a differentiable function at $p \in D$. If J. Raheam Hunad Mansor f'(p) > 0, then is $\epsilon > 0$ such that

$$f(x) < f(p), \forall x < p \text{ in } N(x, p)$$

and

$$f(x) > f(p), \forall x > p \text{ in } N(p, \epsilon).$$

Proof:

If $f: D \to R$ be a differentiable function at $p \in D$, then,

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} > 0 \Longrightarrow \exists \ \epsilon > 0,$$

such that

$$\frac{f(x)-f(p)}{x-p} > 0, \forall x \in N(p,\epsilon).$$

$$\Rightarrow f(x) - f(p)$$
 and $x - p$, have the same sign.

If

$$x > p \Longrightarrow f(x) > f(p),$$

and if

$$x$$

i. e.

 \Rightarrow f is increasing on $N(p, \epsilon)$.

Theorem 5.50: Let $f: D \to R$ be a differentiable function at $p \in D$.

If f'(p) < 0, then is $\epsilon > 0$ such that

$$f(x) < f(p), \forall x > p \text{ in } N(p, \epsilon)$$

and

$$f(x) > f(p), \forall x$$

Proof:

Suppose that $f: D \to R$ be a differentiable function at $p \in D$, then, 301Proi Dr. Raheam

$$f'(p) = \lim_{x \to p} \frac{f(x) - f(p)}{x - p} < 0$$

 $\Rightarrow \exists \epsilon > 0$ such that

$$\frac{f(x)-f(p)}{x-p}<0\;\forall x\in N(p,\epsilon).$$

 $\Rightarrow f(x) - f(p)$ and x - p have the same sign.

If
$$x > p \Longrightarrow f(x) < f(p)$$
.

If
$$x f(p), \forall x \in N(p, \epsilon)$$
.

i. e. \Rightarrow f is decreasing on $N(p, \epsilon)$.

(نقطة النهاية العظمي والصغرى 5.7.3 A Local Maximum and Minimum Point المحلية)

Definition 5.51: A point p is called a *local maximum* point (l.m.p.) of fif there is a $N(p, \epsilon)$ such that

$$f(p) \ge f(x), \forall x \in N(p, \epsilon)$$
.

Definition 5.52 (A local minimum point):

A point p is called a local minimum point (**l. mi. p.**) of f if there is a $N(p, \epsilon)$ such that

$$f(p) \le f(x) \ \forall x \in N(p, \epsilon).$$

Examples 5.53:

1- Let $f: R \to R$ such that

$$f(x) = 3x^4 - 4x^3 - 12x^2, \text{ then,}$$

$$f'(x) = 12x^3 - 12x^2 - 24x \implies f'(x) = 0.$$

$$\implies 12x (x^2 - x - 2) = 0 \implies 12x (x + 1)(x - 2) = 0.$$

$$\implies x = 0, x = -1, x = 2.$$

Since $f(0) \ge f(x), \forall x \in N(0, \epsilon) \implies 0$ is **l. m. p.** of f.

If
$$f(-1) \le f(x)$$
, $\forall x \in N(-1, \epsilon) \Longrightarrow -1$ is **l. mi. p.** of f .

Now if, $f(2) \le f(x)$, $\forall x \in N(2, \epsilon) \Rightarrow 2$ is **l. mi. p.** of f.

2- Let $f: R^+ \to R$ such that

$$f(x) = \sin(1/x)$$
 then,

$$f(x) = \sin(1/x) \text{ then,}$$
$$f'(x) = \frac{-1}{x^2} \cos\left(\frac{1}{x}\right).$$

$$\Rightarrow f'(x) = 0 \Rightarrow \frac{-1}{x^2} \cos\left(\frac{1}{x}\right) = 0.$$

therefore

$$x = \frac{2}{(4n-1)\pi} \text{ is } \mathbf{l. mi. p} \text{ of } f \text{ } (n \in N),$$

and

$$x = \frac{2}{(4n+1)\pi}$$
 is **l. m. p** of f $(n \in N)$.

Theorem 5.54: Let $f: D \to R$ be a differentiable function at $p \in D$, if p is a local maximum point or a local minimum point, then

$$f'(p) = 0.$$

Proof:

Let $f: D \to R$ be a differentiable function at $p \in D$, if p is a local maximum point or a local minimum point.

If $f'(p) > 0 \implies \exists \ a \ N(p, \epsilon)$ such that f is increasing function p is not a l.mi.p and not a l.m. p, C!.

If $f'(p) < 0 \Rightarrow \exists a, N(p, \epsilon)$ such that f is decreasing function p is not a l. mi. p and not a l.m.p., C!.

Then,

$$f'(p) = 0. \blacksquare$$

Remark 5.55: The converse of above theorem is not true. For this purpose, consider the following example:

Example 5.56:

Let
$$f(x) = x^3$$

$$\Rightarrow f'^{(x)} = 3x^2$$

$$\Rightarrow f'(x) = 0.$$

$$\Rightarrow 3x^2 = 0$$

$$\Rightarrow x = 0 \Rightarrow f'(0) = 0.$$

But

x = 0 is not a l. m. p or a l. mi. p of f.

5.7. 3 Rolls Theorem (مبرهنة رول)

Ja L. Allegan Hanad **Theorem 5.57**: Let f be a continuous function on [a,b]differentiable on (a, b) if

$$f(a) = f(b) = 0$$
, then is a point $c \in (a, b)$

such that

$$f'(c) = 0.$$

Proof:

Case (1):

If f is constant mapping

$$\Longrightarrow f'(x) = 0, \ \forall x \in (a, b)$$

 $\Rightarrow \exists c \in (a, b) \text{ such that } f'(c) = 0.$

Case (2):

If f is not constant mapping.

Since f is continuous on compact set [a, b], (why..?)

then,

$$\Rightarrow \exists x_0, y_0 [a, b]$$
 such that

 x_0 is a l.m.p and y_0 is a l.mi.p such that

$$f(y_0) < f(x) < f(x_0), \forall x \in [a, b].$$

If $f(x_0) = f(y_0) \Longrightarrow f$ is constant C!.

$$\implies f(x_0) \neq f(y_0) \implies x_0 \neq y_0$$

 \Rightarrow at least one of the point x_0 or $y_0 \neq a$ or b (f(a) = f(b))

$$\Rightarrow$$
 either $x_0 \in (a, b)$ or $y_0 \in (a, b)$

$$\Rightarrow$$
 either $f'(x_0) = 0$ or $f'(y_0) = 0$ (if p is l.m.p or l.mi.p)

$$\Rightarrow f'(p) = 0 \Rightarrow \exists c \in (a, b) \text{ such that } f'(c) = 0. \blacksquare$$

Example 5.58:

1-
$$f(x) = 3x - x^3, \forall x \in [-\sqrt{3}, \sqrt{3}].$$

Solution 1:

: f is continuous on $[-\sqrt{3}, \sqrt{3}]$, differentiable on $(-\sqrt{3}, \sqrt{3})$, $f(\sqrt{3}) = f(-\sqrt{3}) = 0$.

Then, by Rolle's theorem $\exists c \in (-\sqrt{3}, \sqrt{3})$ such that f'(c) = 0.

$$f'(x) = 3 - 3x^2 \Longrightarrow f'(c) = 3 - 3c^2.$$

$$\Rightarrow f'(c) = 0 \Rightarrow 3 - 3c^2 = 0.$$

$$\Rightarrow c^2 = 1 \Rightarrow c = +1 \in (-\sqrt{3}, \sqrt{3}).$$

2-
$$f(x) = \sqrt{1 - x^2} \quad \forall x \in [-1, 1].$$

Solution 2: Check.■