Remark 4.2:

For above example (4.2)

1- If n = 1 we get Ex.1.

2- If n = 2 we get Ex.4, (R^2, d) is called the Euclidean Plane.

 (R^2, d) is called the Euclidean space. (الفضاء الإقليدي)

Basic Principles of Topology

مبادئ أساسية في التبولوجيا

Definition 4.3:

Let (X, d) be a metric space, $x_0 \in X$, and $0 < r \in R$, then

 $B_r(x_\circ) = \{x \in X | d(x, x_\circ) < r\}$ is called the ball whose center is x_\circ and radius is r.

 $D_r(x_\circ) = \{x \in X | d(x, x_\circ) \le r\}$ is called the disc whose center is x_\circ and radius is r.

- It is clear that $x_{\circ} \in B_r(x_{\circ})$ and $x_{\circ} \in D_r(x_{\circ})$ (why?).
- In sometime we say that $B_r(x_\circ)$ is a neighborhood of x_\circ

Example 4.3:

1- Let (R, d) be the usual metric space and d(x, y) = |x - y|

$$\therefore B_r(x_\circ = \{x \in R | d(x, x_\circ) < r\} = \{x \in R | |x - x_\circ| < r\}$$

$$= \{x \in R | x_{\circ} - r < x < x_{\circ} + r\} = (x_{\circ} - r, x_{\circ} + r)$$

فترة مفتوحة في R

Also,
$$D_r(x_\circ) = [x_\circ - r, x_\circ + r]$$

ملاحظة: إذن كل R هي عبارة عن فترة مفتوحة وكل قرص في R هو عبارة عن فترة مغلقة. كرة في

2- Let (R^2, d) be a metric space. Find $B_r((x_\circ, y_\circ))$

$$B_r((x_\circ, y_\circ)) = \{(x, y) \in R^2 | d((x, y), (x_\circ, y_\circ)) < r\}$$

$$= \left\{ (x, y) \in R^2 \middle| \sqrt{(x - x_\circ)^2 + (y - y_\circ)^2} < r \right\}$$

$$= \{(x, y) \in R^2 | (x - x_\circ)^2 + (y - y_\circ)^2 < r^2 \}$$

معادلة دائرة

$$B_r((x_\circ,y_\circ))$$

3- Let (X, d) be the discrete metric

i.e.,
$$d(x, y) = \begin{cases} 1 \text{ if } x \neq y \\ 0 \text{ if } x = y \end{cases} \quad \forall x, y \in X. \text{ Then}$$

$$B_{\frac{1}{2}}(1) = \left\{ x \in R \middle| d(x, 1) < \frac{1}{2} \right\} = \{1\}.$$
 $B_{\frac{1}{2}}(2) = \{2\}$

i.e.,
$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases} \quad \forall x,y \in X. \text{ Then}$$

$$B_{\frac{1}{2}}(1) = \left\{ x \in R \middle| d(x,1) < \frac{1}{2} \right\} = \{1\}. \qquad B_{\frac{1}{2}}(2) = \{2\}$$

$$B_{10}(2) = R, \qquad D_{\frac{1}{2}}(2) = \{2\}, \qquad D_{1}(2) = R, \qquad D_{10}(2) = R.$$

Definition 4.4: (Interior point فطة داخلية)

Let (X, d) be a metric space and $x_{\circ} \in S \subseteq X$, then we say that x_{\circ} is an interior point of *S* if $\exists r > 0$ s.t $B_r(x_\circ) \subset S$.

المجموعة المفتوحة **Definition 4.5:** (Open set)

Let (X, d) be a metric space and $S \subseteq X$, then we say that S is an open set if $\forall x_0 \in S \exists r > 0$ s.t $B_r(x_0) \subseteq S$.

i.e., S is an open set $\Leftrightarrow \forall x \in S$, x is an interior point of S.

Proposition 4.2: Any ball is an open set

Proof:

Let $B = B_r(x_\circ)$ ball whose center is x_\circ and radius r.

T.P B is an open set

i.e., T.P if $y \in B$, then $\exists h > 0$ (real number) s.t $B_h(y) \subset B$.

$$y \in B \Rightarrow 0 \le d(x_0, y) < r$$

Let
$$h = r - d(x_{\circ}, y) > 0$$

Let $z \in B_h(y)$. T.P $z \in B$, i.e., T.P $d(z, x_\circ) < r$

$$d(z, x_{\circ}) \leq d(z, y) + d(y, x_{\circ})$$

$$< h + d(y, x_{\circ})$$

$$= r - d(x_{\circ}, y) + d(y, x_{\circ})$$

$$= r (d(x_{\circ}, y) = d(y, x_{\circ})$$

$$\Rightarrow z \in B_{r}(x_{\circ}) = B$$

و هذا يعني كل نقطة من نقاط Bهي نقطة داخلية في B

Example 4.4:

From Ex.4.3 and Prop.4.2.

Any open interval (a, b) in R is an open set

$$\chi_{\circ} = \frac{a+b}{2} \ \forall^{\uparrow} r = \frac{d(a,b)}{2}$$

Also, in \mathbb{R}^2 the set of all points inside of any circle is an open set.

Example 4.5:

1- $(a, \infty) = \{x \in R | x > a\}$ is an open set in R.

2- $(-\infty, a) = \{x \in R | x < a\}$ is an open set in R.

(why?). 3- Q(rational numbers) is not open set in R.

Let (R^2, d) be a metric space, then

 $4-A = \{(x_1, x_2) \in R^2 | x_2 > 0\}$ is an open set in R^2 .

5- $B = \{(x_1, x_2) \in \mathbb{R}^2 | x_2 \ge 0\}$ is not open set in \mathbb{R}^2 . (why?)

6- Every disc in R^2 (orR^n) is not open in R^2 (orR^n).

Definition 4.6: (Boundary point)

نقطة حدو دية

Let (X, d) be a metric space and $S \subseteq X$, $x_0 \in X$, then we say that x_0 is a boundary point of $S \Leftrightarrow \forall r > 0$, $B_r(x_\circ) \cap S \neq \emptyset \ \forall B_r(x_\circ) \cap S^c \neq \emptyset$ (where $S^c = X - S$).

Example 4.6:

Let (R, d) be a metric space and let S = [a, b] or (a, b] or [a, b). Then a and b are boundary points of S.

Theorem 4.1:

Let (X, d) be a metric space and let T be the family of all open subsets of X, then

- $1-\emptyset \in T$ and $X \in T$.
- 2- The union of any number (finite or infinite) of open sets in T is also in T.

3- The intersection of a finite number of open sets in T is also in T.

i.e., Let $X \neq \emptyset$ be a metric space and let

 $T = \{S | S \subseteq X \text{ and } S \text{ open set in } X\}$. Then

- 1- $\emptyset \forall X \in T$
- $2 \{S_{\alpha}\}_{\alpha \in \Lambda} : S_{\alpha} \in T \ \forall \alpha \in \Lambda \Rightarrow \bigcup_{\alpha \in \Lambda} S_{\alpha} \in T.$ (\Lambda index set)
- 3- If S_i ∈ T \forall_i , $1 \le i \le n$ (n positive interger number) \Rightarrow $\bigcap_{i=1}^n S_i \in T$.

Proof:

1- Let
$$x \in \emptyset \Rightarrow \exists B_r(x) \subset \emptyset \Rightarrow \emptyset$$
 is open $\Rightarrow \emptyset \in T$

$$\therefore \nexists x \in \emptyset \Rightarrow \forall r > 0, B_r(x) \not\subset \emptyset \Rightarrow \emptyset$$
 is open

Also, $\forall x \in X$, $\exists r > 0$ s.t $B_r(x) \subset X \Rightarrow X$ is an open set.

2- Let $\{S_{\alpha}\}_{{\alpha}\in\Lambda}$ be a family of open sets, and let $x\in\bigcup_{{\alpha}\in\Lambda}S_{\alpha}$.

$$\Rightarrow \exists \alpha \in \Lambda \text{ s.t } x \in S_{\alpha}$$

: S_{α} is an open set $\Rightarrow x$ is an interior point of S_{α} .

$$\Rightarrow \exists B_r(x) \subseteq S_{\alpha^{\circ}} \subseteq \bigcup_{\alpha \in \Lambda} S_{\alpha}$$

 $\Rightarrow x$ is an interior point of $\bigcup_{\alpha \in \Lambda} S_{\alpha}$

 $\Rightarrow \bigcup_{\alpha \in \Lambda} S_{\alpha}$ is an open set.

3- Let S_i , $i=1,2,\cdots,n$ be open sets in T, and let $x\in \bigcap_{i=1}^n S_i \ \forall i$ $\Rightarrow x\in S_i \ \forall i \ (1\leq i\leq n)$

$$: S_i \text{ is open set } \forall i \Rightarrow \exists r_i \text{ s.t } B_{r_i}(x) \subseteq S_i$$

Let $0 < r = \min\{r_1, r_2, \dots, r_n\}$

$$\therefore \ B_r(x) \subseteq B_{r_i}(x) \forall i \subseteq S_i \ \forall i \ \subseteq \bigcap_{i=1}^n S_i$$

 $\therefore \bigcap_{i=1}^n S_i$ is an open set $\Rightarrow \bigcap_{i=1}^n S_i \in T$.

Remark 4.3.

Finiteness in (3) is essential

Let
$$G_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$$
 $(n = 1, 2, \cdots)$. Then $G_n \forall n$ open in R^1 , but $\bigcap_{n=1}^{\infty} G_n = \{0\}$ which is not open in R^1 .

Definition 4.7:

Let $X \neq \emptyset$ and T be the family of subsets of X which satisfy the conditions (1), (2) & (3) in the Theorem above (Th 4.1). Then T is called a topology on X and (X,T) is called a topological space.

Example 4.7:

1- Let $X \neq \emptyset$ be any set, and $T = \{\emptyset, X\}$, then (X, T) is a topological space.

This topology is called indiscrete topology or trivial topology.

2- Let $X \neq \emptyset$ be any set, and T be a family of all subsets of X, i.e.,

 $T = \{A | A \subseteq X\}$, then (X, T) is a top. Space. This topology is called a discrete topology.

3- Let
$$X = \{a, b, c\}$$
, then

a-
$$T_1 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$$
 is a topology on X

b-
$$T_2 = \{\emptyset, X, \{a, b\}, \{a, c\}\}$$
 is not a topology on X

because
$$\{a, b\} \cap \{a, c\} = \{a\} \notin T_2$$
.

$$c-T_3 = \{\emptyset, X, \{a\}, \{b\}\} \text{ is not a topology on } X.$$
 (why?)

X على X ملاحظة: اذا كان X فضاء متري فيمكن استخدام البعد X لتعريف تبولوجيا X على X لجعل

نه ليس كل (
$$X, T$$
) فضاء تبولوجيا . ان هذه العملية غير قابلة للانعكاس ، اي انه ليس كل تبولوجيا على

X يمكن ان يستحصل من تعريف بعد على X .

مثال : اذا کانت
$$X = \{a, b, c\}$$
 و $X = \{a, b, c\}$ فضاء تبولوجي ولکن لا $X = \{a, b, c\}$ فضاء تبولوجي ولکن لا يو جد بعد

d على X يعطى هذا التبولوجيا.

Theorem 4.2:

S is an open set $\Leftrightarrow S$ is union of any number of balls.

Proof:

Suppose that S is an open set

$$\Rightarrow \forall x \in S \exists r_x > 0 \text{ s.t } B_{r_x}(x) \subset S.$$

And, if $S = \bigcup_{x \in S} B_{r_x}(x) \Rightarrow S$ is an open set.

Definition 4.8:

Let X be a metric space (or topological space). A subset E of X is called Hei Di Kalie alu Himad Marisoli closed $\Leftrightarrow E^c = X - E$ is open.

Example 4.8:

1- [a, b] is a closed set in R, because

$$R - [a, b] = (-\infty, a) \cup (b, \infty)$$

2- $\{a, b\}$ is a closed set in R, because

$$R - \{a, b\} = (-\infty, a) \cup (a, b) \cup (b, \infty)$$

3- (a, b) is not closed set in R, because

$$R - (a, b] = (-\infty, a] \cup (b, \infty)$$

- 4- Q is not closed in R. (why?)
- 5- In general any disc in \mathbb{R}^n is closed set.
- 6- In general any ball in \mathbb{R}^n is not closed set.

7- $[a, \infty) = \{x \in R | x \ge a\}$ is closed, because $R - [a, \infty) = (-\infty, a)$ open.

8- $(-\infty, b] = \{x \in R | x \le b\}$ is closed, because $R - (-\infty, b] = (b, \infty)$ open.

Theorem 4.3:

Every finite set in a metric space (X, d) is closed.

Proof:

Let
$$A = \{x_1, x_2, \dots x_n\}$$
 and $A^c = X - A$. T.P A^c is open.

Let
$$y \in A^c \Rightarrow y \neq x_i$$
 $\forall i = 1, 2, \dots, n$ $\Rightarrow d(y, x_i) = r_i > 0$

Let
$$r = \min\{r_1, r_2, ..., r_n\}$$

$$B_r(y) \cap A = \emptyset \Rightarrow B_r(y) \subset A^c \Rightarrow A^c \text{ is open } A \text{ is closed.}$$

Theorem 4.4:

Let *X* be a metric space (or a topological space) and *T* be the family of all closed subsets of *X*. i.e., $\tau = \{E \subseteq X | E \text{ is closed}\}$. Then.

1-
$$\emptyset, X \in \tau$$

- 2- The union of a finite number of closed sets is closed.
- 3- The intersection of any number of closed sets is closed.

Proof: (check)

Remark 4.4:

The finiteness of the family in Th. 4.4.(2) is essential .i.e., The union of an infinite collection of closed set need not be closed.

Example 4.9:

Let
$$E_n = (-\infty, -\frac{1}{n}] \cup [\frac{1}{n}, \infty)$$
 $n = 1, 2, \cdots$ (closed)

$$\Rightarrow E_n^c = \left(-\frac{1}{n}, \frac{1}{n}\right) \text{ open } \forall n = 1, 2, \cdots$$

Then $\bigcup_{n=1}^{\infty} E_n$ is open (not closed), because

 $(\bigcup_{n=1}^{\infty} E_n)^c = \bigcap_{n=1}^{\infty} E_n^c = \bigcap_{n=1}^{\infty} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\}$ closed **at Act de B**. When the point is a closed closed in the point of th

edure Notes in Matternetical Analysis by Prof. Dr. Rate am, Amnad Walternetical Analysis by Prof. Dr. Rate am, Amada Walternetical Analysis by Prof. Dr. Rate a