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The relation between the field of real numbers and 

The field of rational numbers 

Proposition 1.1: Every ordered field contains a subfield like the field of 

rational numbers. 

Proof: Let (𝐹, +, . ) be any ordered field. 

∴ 0, 1 ∈ 𝐹 (0 is additive identity and 1 is multiplicative identity), then we 

see that 

1 + 1 + 1 +⋯+ 1⏟            
(n−times)

= 𝑛. 1 (𝑛 ∈ 𝑍+) ⇒ 𝑛. 1 ≠ 0 (why?) 

Thus, if  𝑛. 1 = 0, ∀ 𝑛 ∈ 𝑍+. So, If it is not, i.e., let 𝑛. 1 = 0 for some 

𝑛 ∈ 𝑍+, and let 𝐾 be the least positive integer such that  

1 + 1 + 1 +⋯+ 1⏟            
(K−times)

= 𝑘. 1 = 0 

Clearly that 𝑘 > 1 (since 1 > 0) and (𝑘 − 1). 1 > 0 (why?) 

⇒ 0 < (𝑘 − 1). 1 < 𝑘. 1 = 0 ⇒ 0 < 0 ⇒ 𝐶!,  

thus 𝑛. 1 = 0 ⟺ 𝑛 = 0 (𝑛 ∈ 𝑍+). 

From the above remarks we see that 𝐹 contains elements of kind  

        𝑛. 1 = 𝑛, (𝑛 ∈ 𝑍+),  

and 

       𝑛. 1 = 0 ⟺ 𝑛 = 0 ,  

also 𝑛. 1 = 𝑚. 1 ⟺ 𝑛 = 𝑚. 

∵ 𝐹 is a field ⇒ F contains – 𝑛. 1 where  

         (−1) + (−1) + (−1) + ⋯+ (−1)⏟                      
(−1)(n−times)

= −𝑛. 1 
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Thus, 𝐹 contains a copy of  𝑍. 

∵ 𝐹 is a field ⇒ ∀0 ≠ 𝑛 ∈ 𝑍 ⇒
1

𝑛
∈ 𝐹,  

therefore 𝐹 contains a copy of  𝑄. ∎ 

Proposition 1.2: The equation 𝑥2 = 2 has no solution in 𝑄. 

Proof: Assume that 𝑥2 = 2 has a solution in 𝑄, say 𝑦 

∴ 𝑦 ∈ 𝑄 ⇒ 𝑦 =
𝑎

𝑏
, 𝑏 ≠ 0 (𝑎, 𝑏 ∈ 𝑍) and 𝑦2 = 2 ⇒ 𝑎2 = 2 𝑏2,  𝑎2 > 0 

Suppose that 𝑎, 𝑏 is positive number and the greatest common factor 

between them is 1. Then we have the following cases: 

1. 𝑎 and b are odd ⇒ 𝑎2 = 2 𝑏2 ⇒ 𝐶! 

2. 𝑎 is odd, b is even. When b is even then b = 2𝑐 (𝑐 ∈ 𝑁) 

∵ 𝑎2 = 2 𝑏2 ⇒ 𝑎2 = 8 𝑐2 ⇒ 𝐶! 

3. 𝑎 is even, b is odd, then 𝑎 = 2𝑑 (𝑑 ∈ 𝑁) 

∵ 𝑎2 = 2 𝑏2 ⇒ 4𝑑2 = 2 𝑏2 ⇒ 2𝑑2 = 𝑏2 ⇒ 𝐶! 

From all above we get that 𝑥2 = 2 has no solution in the rational number 

𝑄 ∎ 

Theorem 1.1: The equation 𝑥2 = 2 has a unique positive real root. 

Proof: Let 𝑆 = {𝑥 ∈ 𝑄|𝑥 > 0 and 𝑥2 < 2} 

∵ 1 ∈ 𝑆 ⇒ 𝑆 ≠ 𝜑, and S is bounded above (since 2,3, …, is an upper 

bound of 𝑆 ), then by completeness property of 𝑅, 𝑆 has least upper bound 

in 𝑅. 

Let sup(S) = 𝑦0,  𝑦0 ∈ 𝑅. Clearly that 𝑦0 > 0 (by Def. of 𝑆). 

Now, claim that 𝑦0
2 = 2, if not (i.e.𝑦0

2 ≠ 2), then 𝑦0
2 < 2 or 𝑦0

2 > 2. 
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1. If 𝑦0
2 < 2, choose ℎ s.t 0 < ℎ < 1 

∴ (𝑦0 + ℎ)
2 = 𝑦0

2 + 2𝑦0ℎ + ℎ
2 = 𝑦0

2 + ℎ(2𝑦0 + ℎ) < 𝑦0
2 + ℎ(2𝑦0 + 1) 

Also, let ℎ satisfy the following condition  

          ℎ <
2−𝑦0

2

2𝑦0+1
⇒ 𝑦0

2 + ℎ(2𝑦0 + 1) < 2 

                ⇒ (𝑦0 + ℎ)
2 < 𝑦0

2 + ℎ(2𝑦0 + 1) < 2 

∵  (𝑦0 + ℎ)
2 < 2, then (𝑦0 + ℎ) ∈ 𝑆, when 𝑦0 < 𝑦0 + ℎ ⇒ 𝑦0 is not 

upper bound of 𝑆 ⇒ 𝐶! (𝑦0 = sup(S)). 

2. If 𝑦0
2 > 2, choose 𝑘 s.t  0 < 𝑘 < 1 

∴ (𝑦0 − 𝑘)
2 = 𝑦0

2 − 2𝑦0𝑘 + 𝑘
2 = 𝑦0

2 − 𝑘(2𝑦0 − 𝑘) > 𝑦0
2 − 𝑘(2𝑦0 + 1) 

Also, let 𝑘 satisfy the following condition  

          𝑘 >
𝑦0
2−2

2𝑦0+1
⇒ 𝑘(2𝑦0 + 1) < 𝑦0

2 − 2 ⇒ −𝑘(2𝑦0 + 1) > 2 − 𝑦0
2 

                ⇒ 𝑦0
2 − 𝑘(2𝑦0 + 1) > 2 ⇒ (𝑦0 + 𝑘)

2 > 𝑦0
2 − 𝑘(2𝑦0 + 1) > 2 

⇒ (𝑦0 − 𝑘)
2 > 2, then (𝑦0 − 𝑘)is an upper bound of 𝑆, thus 𝑦0 > 𝑦0 − 𝑘 

(because 𝑦0 least upper bound of 𝑆) ⇒ 𝐶! (𝑦0 − 𝑘 < 𝑦0). 

From (1) and (2) ⇒ 𝑦0
2 = 2. 

Here to prove that 𝑦0 is unique. Let ∃ 𝑧 ∈ 𝑅 s. t z ≠ 𝑦0 and 𝑧
2 = 2 

∵ z ≠ 𝑦0, then either 𝑧 > 𝑦0 ⇒ 2 = 𝑧2 > 𝑦0
2 = 2 ⇒ 2 > 2 ⇒ 𝐶! 

or     𝑧 < 𝑦0 ⇒ 2 = 𝑧2 < 𝑦0
2 = 2 ⇒ 2 < 2 ⇒ 𝐶! 

Thus z = 𝑦0 and 𝑦0 is the only one positive real root to 𝑥2 = 2  ∎ 

Remark:  
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1. From above 𝑄 is a proper subfield of 𝑅 (i.e.𝑄 ⊊ 𝑅) because√2 ∈

𝑅, but √2 ∉ 𝑄. 

2. 𝑄 is not complete, because 𝑆 = {𝑥 ∈ 𝑄|𝑥 > 0 and 𝑥2 < 2} ⊂ 𝑄, 𝑆 ≠

𝜑 (1 ∈ 𝑆) 

𝑆 is bounded above and sup(𝑆) = √2 ∉ 𝑄, then 𝑆 has no least upper 

bound in 𝑄, thus 𝑄 is not complete field. 

ℚ2:  prove that 𝑥
2 = 3 has no solution in Q. (Check)                    

ℚ3:  prove that 𝑥
2 = 3 has a unique positive real root. (Check)

 

Theorem 1.2: For any positive real number 𝑎 and for any 𝑛 ∈ 𝑍+, ∃! 

positive real number satisfies the following 𝑥𝑛 = 𝑎 and denoted this 

unique number by √𝑎
𝑛  (or 𝑎1 𝑛⁄ ). 

Proof: The proof is similar to proof of (Theorem 1.1). 

ℚ4:  Let 𝑎, 𝑏 be tow positive real numbers and 𝑛 ∈ 𝑍
+ prove that

     (𝑎, 𝑏)
1
2 = 𝑎

1
2. 𝑏

1
2    (Check)                                                             

 

Theorem 1.3: (Archimedes property) 

For any real numbers 𝑎, 𝑏 and 𝑎 > 0, there is a positive integer number 𝑛 

s.t 𝑛𝑎 > 𝑏. 

 

For any real numbers 𝑎, 𝑏 and 𝑎 > 0, there is a positive integer number 𝑛 

s.t 𝑛𝑎 > 𝑏. 

Let any real numbers 𝑎, 𝑏 ann if there is a positive integer number 𝑛 such 

that 𝑛𝑎 ≤ 𝑏, then, 𝑎 < 0 

 and 𝑎 > 0, there is a positive integer number 𝑛 s.t 𝑛𝑎 > 𝑏. 
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Proof: Let 𝑆 = {𝑎𝑘|𝑘 ∈ 𝑁} ⊂ 𝑅, 𝑆 ≠ 𝜑 (becauce 1. 𝑎 = 𝑎 ∈ 𝑆 

∴ by completeness of 𝑅, 𝑆 has least upper bound. Let 𝑦 = sup(𝑆) , (𝑦 ∈

𝑅) 

∴ 𝑎 > 0 ⇒ 𝑦 − 𝑎 < 𝑦 ⇒ 𝑦 − 𝑎 is not upper bound of 𝑆. Hence, ∃ 

element 𝑚𝑎 ∈ 𝑆 (for some 𝑚 > 0,𝑚 ∈ 𝑍+) s.t 𝑦 − 𝑎 < 𝑚𝑎 ⇒ 𝑚𝑎 +

𝑎 > 𝑦 ⇒ (𝑚 + 1)𝑎 > 𝑦 

 But, (𝑚 + 1)𝑎 ∈ 𝑆, (𝑚 + 1 ∈ 𝑁) ⇒ 𝐶!, because 𝑦 is an upper bound 

of 𝑆. Then 𝑛𝑎 > 𝑏  ∎  

Corollary 1.1: For any positive real number 𝜖, there is a positive integer 

𝑛 such that 
1

𝑛
< 𝜖. (i. e. ) ∀𝜖 > 0, ∃ 𝑛 ∈ 𝑁 s. t 

1

𝑛
< 𝜖. 

Proof: Take 𝑏 = 1 and 𝑎 = 𝜖, then by (Theorem 1.3), we get that 
1

𝑛
< 𝜖. 

Density of Rational Numbers 

Theorem 1.4: If 𝑎, 𝑏 ∈ 𝑅 such that 𝑎 < 𝑏, then there exists 𝑟 ∈ 𝑄 such 

that 𝑎 < 𝑟 < 𝑏. 

Or ((Between any two real numbers there is at least one rational 

number)). 

Proof: 

Case 1: Let 0 < 𝑎 < 𝑏, and 𝑏 − 𝑎 > 1.  

and  

Let 𝑆 = {𝑛 ∈ 𝑁| 𝑛 = 𝑛. 1 > 𝑎} 

∴ 𝑆 ≠ 𝜑 (by Archimedes property) (How?) 
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Let 𝑘 be the smallest positive integer in 𝑆 [∵ 𝜑 ≠ 𝑆 ⊂ 𝑁 and 𝑁 is well-

ordered set, then by (Def. 1.6) 𝑆 has a smallest element] 

         ⇒
𝑘 − 1 ≤ 𝑎 < 𝑘
𝑏 − 𝑎 > 1        

} ⇒ 𝑎 < 𝑘 < 𝑏 (How? )  

In this case 𝑘 is the rational number between 𝑎 and 𝑏 (𝑘 is an integer 

number). 

Now, if 

           0 < 𝑎 < 𝑏, and 0 < 𝑏 − 𝑎 < 1.  

when (𝑏 − 𝑎) > 0, then by (Archimedes property), ∃ 𝑛 ∈ 𝑁 s. t 𝑛(𝑏 −

𝑎) = 𝑛𝑏 − 𝑛𝑎 > 1 

∴ From case (1), ∃ 𝑘 ∈ 𝑁 s. t 𝑛𝑎 < 𝑘 < 𝑛𝑏 ⇒ 𝑎 <
𝑘

𝑛
< 𝑏 and hence 

𝑘

𝑛
 is 

rational number. 

Case 2: 𝑎 < 0 < 𝑏, in this case 0 is the rational number between 𝑎, 𝑏. 

Case 3: 𝑎 < 𝑏 < 0 ⇒  0 < −𝑏 < −𝑎 

By case (1), ∃ 𝑘 ∈ 𝑄 s. t − 𝑏 < 𝑟 < −𝑎 ⇒ 𝑎 < −𝑟 < 𝑏. ∎ 

Corollary 1.2: Let 𝑎 < 𝑏, prove that there exists infinitely many of 

rational numbers between 𝑎, 𝑏. 

Proof: (check). 

 


