Chapter One: The Real Numbers Lecture Notes in Mathematical Analysis

The relation between the field of real numbers and
The field of rational numbers

Proposition 1.1: Every ordered field contains a subfield like the field of

rational numbers.
Proof: Let (F, +,.) be any ordered field.

~ 0,1 € F (0 is additive identity and 1 is multiplicative identity), then we

see that

1+41+1+-+1=nl1mezZ*)=>n1+0(why?

(n—tfmes)

Thus, if n.1=0,vn € Z™*. So, Ifitisnot, i.e., let n.1 = 0 for some

n € Z*, and let K be the least positive integer such that

1+1+1+-+1=k.1=0

(K—times)

Clearly that k > 1 (since 1 > 0) and (k — 1).1 > 0 (why?)
>0<(k-1).1<k.1=0=0<0 = (!,
thusnl1=0=n=0(mneZzZ").
From the above remarks we see that F contains elements of kind
nl=n (nez"),
and
nl=0=n=0,
alson.1=m.1 & n=m.
+ F is a field = F contains - n. 1 where

CFD+CED+HED+ -+ (D) =-n1

(—1)(n—times)
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Thus, F contains a copy of Z.
“Fisafield>v0#neZ=>-€F,

therefore F contains a copy of Q. m
Proposition 1.2: The equation x2 = 2 has no solution in Q.

Proof: Assume that x? = 2 has a solution in Q, say y
~y€Q=>y=-,b#0(ab€Z)andy? =2 =a’>=2b% a’>>0

Suppose that a, b is positive number and the greatest common factor

between them is 1. Then we have the following cases:

1. aand b are odd = a? = 2 b? = (!

2. aisodd, biseven. When b iseventhenb = 2c (c € N)
vat=2b*=>a*=8c?*> (!

3. aiseven, bisodd, then a = 2d (d € N)

v a? =2b%*=4d* =2b%*= 2d* = b*= (!

From all above we get that x? = 2 has no solution in the rational number
Om

Theorem 1.1: The equation x? = 2 has a unique positive real root.

Proof: Let S = {x € Q|x > 0 and x? < 2}

+1€85 =S5+ @,and S is bounded above (since 2,3, ..., is an upper
bound of S ), then by completeness property of R, S has least upper bound
inR.

Let sup(S) = yo, yo € R. Clearly that y, > 0 (by Def. of 5).

Now, claim that y2 = 2, if not (i.e.y2 # 2), then y5 < 2 or y2 > 2.
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1. If y2 < 2,choose hstO0O<h<1
~ (Vo +R)* =y§ + 2yoh + h? = y§ + h(2yo + h) < y§ + h(2y, + 1)

Also, let h satisfy the following condition

2-y8 2
h < _23/'0+1 = Yo + h(zyo + 1) <2

= (yo +h)2 <y5+hQy,+1) <2

v (yo + h)? < 2,then (y, + h) € S, when y, < y, + h = y, is not
upper bound of S = C! (y, = sup(S)).

2. If y2 > 2,choose kst 0<k<1
~ (o —k)? = y§ — 2yok + k? = y§ — k(2yo — k) > y§ —k(2yo + 1)
Also, let k satisfy the following condition

2_
k>;1;+21:>k(2yO+1)<y§—2=>—k(2y0+1)>2—yg
0

Sy —kQRy,+1)>2> o+ k)2 >y —ky,+1) > 2

= (yo — k)? > 2, then (y, — k)is an upper bound of S, thus y, >y, — k
(because y, least upper bound of S) = C! (y, — k < y).

From (1) and (2) = y3 = 2.

Here to prove that y, is unique. Let 3z € Rs.tz # y, and z2 = 2
7 # yo,theneitherz >y, 22=22>y2=2=>2> 2= (!

of z<y,=>2=2z’<yt=2>2<2>(!

Thus z = y, and y, is the only one positive real rootto x> =2 m

Remark:
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1. From above Q is a proper subfield of R (i.e.Q € R) becausev2 €
R,butv2 ¢ Q.

2. Q is not complete, because S = {x € Q|x > 0andx?> <2} c Q,S #
p(1les)

S is bounded above and sup(S) = V2 & Q, then S has no least upper

bound in Q, thus Q is not complete field.

Q,: prove that x? = 3 has no solution in Q. (Check)
Q5: prove that x? = 3 has a unique positive real root. (Check)

Theorem 1.2: For any positive real number a and foranyn € Z*, 3!

positive real number satisfies the following x™ = a and denoted this

unique number by ¥a (or a'/™).

Proof: The proof is similar to proof of (Theorem 1.1).

Q4: Let a, b be tow positive real numbers and n € Z* prove that

1 1 1
(a,b)2 = a2.b2 (Check)

Theorem 1.3: (Archimedes property)

For any real numbers a, b and a > 0, there is a positive integer number n

s.tna > b.

For any real numbers a, b and a > 0, there is a positive integer number n

s.tna > b.

Let any real numbers a, b ann if there is a positive integer number n such

that na < b, then,a < 0

and a > 0, there is a positive integer number n s.tna > b.
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Proof: Let S = {ak|k e N} c R,S # ¢ (becauce l.a=a € S

=~ by completeness of R, S has least upper bound. Let y = sup(S), (y €
R)

~a>0=>y—a<y=y—aisnotupperbound of S. Hence, 3
element ma € S (forsomem > 0,m € Z*) sty —a <ma = ma +

a>y=>m+1a>y

But, (m+ 1)a € S,(m + 1 € N) = (!, because vy is an upper bound
of S. Thenna>b m

Corollary 1.1: For any positive real number ¢, there is a positive integer

nsuchthat%<e. (i.e.)Ve>0,EInENs.t%<e.

Proof: Take b = 1 and a = ¢, then by (Theorem 1.3), we get that% < €.

Density of Rational Numbers

Theorem 1.4: If a,b € R such that a < b, then there exists r € Q such

thata < r < b.

Or ((Between any two real numbers there is at least one rational

number)).

Proof:

Casel:Let0<a<b,andb —a > 1.
and

LetS={neN|n=n.1>a}

~ S # @ (by Archimedes property) (How?)
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Let k be the smallest positive integerin S [~ ¢ # S < N and N is well-
ordered set, then by (Def. 1.6) S has a smallest element]

k—1<a<k

S }=>a<k<b(How?)

In this case k is the rational number between a and b (k is an integer
number).
Now, if

O<a<band0<b—-a<l.
when (b — a) > 0, then by (Archimedes property), 3n € Ns.tn(b —
a)=nb—na>1
~Fromcase (1), Ik ENs.tna<k<nb=a< S < b and hence%is
rational number.
Case 2: a < 0 < b, in this case 0 is the rational number between a, b.
Case3:a<bhb<0=>0<-b<-—a
Bycase(l),3k€Qs.t—-b<r<—-—a=a<-r<b.nm

Corollary 1.2: Let a < b, prove that there exists infinitely many of

rational numbers between a, b.

Proof: (check).



