Chapter Six: Riemann Stieltjes Integral

6.3 Linearity of Riemann Integral (Gley JalSs 4uhi)

Theorem 6.13: If f is R-integrable on [a, b] and k is any constant, then
kf is R-integrable on [a, b] and kf;f = f; kf.

Proof: Let € > 0, since f is R-integrable on [a, b].

= 3 a partition on [a, b]

= P f—e<R(f.p)and [ f + ¢ > R(f,p).

SR F==I = e <RU 0,
and

[, f+e>R(f.p).
Case (1): If k > 0

and
kR(f,p) = R(kf,p).

# k[ f —ke < R(kf,p) andk [, f + ke < R(kf,p).

But k [, f — ke < R(kf,p) < [, kf
and
2 kf <RGkf,p)
Sk fPf—ke < [PKf < [P <K JPf +ke
** € 1s an arbitrary, then,

K F<[f <[ kf<kff

= [Pkf=[kf =k f
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= kf is R-integrable on [a, b] and kf:f = f: kf.
Case (2): If k < 0.
= kR(f,p) = R(kf,p) and kR(f,p) = R(kf,p).
tk fy f + ke <RKf,p) < [} kf.
and
[P kf <RGcf.p) <k [ f — ke
Sk SPf ke < [Pkf < [Pk <K SPf— ke
K F<[ < Pkf<kff
= [Pkf= [ kf=k[f.
= kf is R-integrable on [a, b] and kf(ff = ff kf.
Case (3): If k = 0.

= each side is zero.

Theorem 6.14: If f; and f, are R-integrable on [a, b], then f; + f, is R-
integrable on [a, b] and f;(f1 +f,) = f;’ fi+ ff fs.

Proof: let e > 0, since f; and f, are R-integrable on [a, b].

= 3 partitions p; and p, on [a, b] such that
b b =
fg fi —€ <R(fi,py) and [, fi + € > R(fy, p1).

[0 f - € <R(fypp)and [L f + € > R(fyp2)

Let p = p; U p,. Let m; and m"; be infimum of f; and f, respectively on
the segment [x;_4, x;] of p.

emi+m"; < 0+ fL(x),  Vx € [x;_q, x;].
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E(flip) + E(fz'P) < B(fl + fZJP)
AISO’ E(fll ,D) + E(fz» ,0) 2 E(fl + fZJ ,0)
LA+ fr=2e <R(fi+ farp)

And
[Ph+ 1 f+2e>RU+ fop)

But R(f, + f2,0) < [, (fi + f2)

and
[P+ £) <R + fop).
SRS 26 < [+ )

<[P+ <[ hi+[f+2e

Since € is an arbitrary and f; and f, are R-integrable on [a, b], then
fi + f> is R-integrable on [a, b] and ff(f1 + f) = ff fi+ f(f fa.

Theorem 6.15: If f is R-integrable on [a,b] and a < c < b , then f is
R-integrable on [a,c], [c,b]and [’ f + fcbf = f:f .

Proof: Let € > 0, since f is R-integrable on [a, b].
= 3 a partition p on [a, b] such that
[Pf—e<R(f,p) andR(f,p) < ['f +e.

Let p; = p N [a,c] be a partition on [a, c].

p> = p N [c, b] be a partition on [c, b].

R(f.p) = R(f,p1) + R(f,p2)
and

R(f,p) = R(f, p1) + R(f, p2) . Hence
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[Jf —€e<R(f,p)e

= [, f—e<RUp)+R(F\p) < [[f+], f (1)
R(f.p) <[} f+e.
= [ F+ 0 F<RUp)+R(Fip) < [Of +e 2)

From (1)and (2) we get

[Pr—e<[F+Ilf<fir+flr<fif+e

Since € is an arbitrary
S <SS+ i<+ < LS
=S+ r=0r+ 00

= JSf=fand [Pf=["F
then f is R-integrable on [a, c].

Andon[c,bland [Cf+ [ f=[]f.

Corollary 6.16: If f is R-integrable on [a, b] and [c, d] < [a, b], then f is
R-integrable on [c, d].

Proof: Since a < ¢ < b and fis R-integrable on [a, b].
= f is R-integrable on [a, c]and [c, b].

But c < d < b, then f is R-integrable on [c,d]and [d, b]
= f is R-integrable on [c, d].

Theorem 6.17: If f is R-integrable on [a,c] and [c, b], then f is R-
integrable on [a, b].

Proof: Let € >0, since f is R-integrable on [a,c]and [c, b], then
3 partitions p; and p, on [a, c] and [c, b] respectively such that



Chapter Six: Riemann Stieltjes Integral

[;f—e<R(f,pand [ f+e>R(f,p).
[Pf —e<R(f.p;)and [ f +€>R(f,p,).
Let p = p; U p,.

[+ f =26 <R(f,p) +R(f,p) =R(p) < [, f- ()

[Sf+ [ f+2¢>R(f,p) +R(f.p) = R(f,p) = fff. )
From (1) and (2) we get

JSf+ 0l f—2e<fif <SPF<Sif+[0f+2e.

» € IS an arbitrary, then
IR IR I EIN RS
= fgbf = faEf = f is R-integrable on [a, b].

Theorem 6.18: If f is a continuous function on [a,b], then f is R-
integrable on [a, b].

Proof: - [a, b] is a compact set and f: [a, b] — R is continuous on [a, b],
then fis uniformly continuous on [a, b] (if f: X — R is continuous and X
Is compact = f is uniformly continuous).

Ve > 0,36 > 0 suchthatVvx,y € [a,b]if |x —y| <34.

= |f) —fl<e

Let p = {a = xy, x4, ..., X, = b} be a partition on [a, b] such that

Ax; —b-a Vi=1,..,n.

n

Let m; = inf {f (%) | x € [x;—1, x;1}

M; = sup{f (x) | x € [x;_1, %]}

« f is conts on [x;_q, x;]
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= 3z;,l; € [x;_1, x;] such that

m; = f(z,),M; = f(l;), Vi=1,..,n
v8d>0=3In€N suchthat

s> (b—a)=="<6.

.b-a

T<6:>|Zl_ll|<6' Vi=1,...,n.
~ f is uniformly conts on [a, b].
= |f(z) — fUII < é
€
= |m; = M| = [M; —m;| <-—.

~ R(f,p) —R(f,p) < € = f is R-integrable on  [a, b].

Remark 6,19: The converse of above theorem is not true. Consider the
following example.

Example 6.20: Let f:[0,2] — R be a function such that

fo={ *77

Then, f is R-integrable on [0,2], but not continuous on [0,2].

Solution:

2.1 22 2 2(n-1) 2n _
) e — = 2.

3
n’n’n n ’'n

Letp =0,
R(f,p) = XL miAx; = myAxy + myAx, + -+ m,Ax, .
= 224224 422=2,

=22+2+42+ -+ (D} =2 -1 +1}.
=Z(2n-1}=4-2.

Jo f =sup {R(f,p)} = 4
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R(f,p) = Y™, M;Ax; = M;Axy + MyAx, + -+ M,Ax,

2 4
— \'n Z == —
=Y,2-=2n=4

=l f =0 =4

= f is R-integrable on [0,2].
But f is not conts on [0,2] atx = 1,
And since (% +1) - 1in[0,2].
Butf(x+1)=2+f(1)=1in R.
6.4 Some Properties of R-Integrals (clay JelSS yal g3 (any)
(1) If f is R-integrable on [a, b], and

f(x) =0, Vx € [a,b], then [ f > 0.

Proof: = f(x) = 0 Vx € [a, b]

= R(f,p) = 0 for any partition on [a, b].

f:f > 0 since f is R-integrable

==l f=0fz0= 20
(2) If fiand f, are R-integrable on [a, b] and f; < f,, then f: fi < ff fa .

Proof: Leth = f, — f;.
“filx) < fo(x), Vx€lab]=h(x)=0 VxE€][ab].

=[Th20= [X(fi-fi)20= [C(f)+[(~f) =0
= (- (f)20= ()= [ (f).

= [P(f) < [ (f).
Or
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v fi(x) < f,(x) Vx € [a, b] = my; < my;
= R(f1,0) < R(f2,0) = [, (f) < [ (f2) and since

f1 and f, are R —integrable = ff(fl) < ff(fz).

(3) Let f and h be a functions defined on [a, b] such that fh and h are R-
integrable on [a,b] If h > 0 and m, M are constant such that m < f <

M, thenm [ h < [Thf <M [ h.
Proof: Check.

(4) If f is R-integrable on [a, b], then |f]| is R-integrable on [a, b] and
b b

Proof: Let m'; = inf{|f| |x € [x;_1,x;]} and m; = inf {f | X € [x;_1, %]}
M; = sup{|f] |x € [x;—1, %]} and M; = sup{f | x € [xj_1, %1}

R(Ufl,p) — R(f], p) < € = |f| is R-integrable on [a, b].
v —f<Ifland f <Ifl = [, f < [;If] and
Lr<fif= = n.

Remark 6.21: The converse of (4) is not true.

i.e. [f] is R-integrable on [a, b], but f is not R-integrable on [a, b]

1 ifx € Qin [0,1]

Example 6.22: Let f(x) = {_1 if x € Q in [0,1]

| o

, ”T_lg =1} be a partition on [0,1].

Let p = {0,

S|=
S

B(f:p) = ?:1miAxi = ?:1(—1)% =" _ -1

n

R(f,p) = Ty Midx; = T, (1) =7 = 1

n

R(f,p) # R(f, p).

= fglf =1and fOIf =1 = f is not R-integrable on [0,1].
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Also, |[f(x)| =1 vx € [0,1],
R(Ufl,p) =RUfl,p) =1
= fgllfl = f()TlfI =1 = |f]| is R-integrable on [0,1]

(5) If f is R-integrable and non negative on [a,d] and if b, c are points
suchthata < b < ¢ < d, then [, f < fadf. (check)

(6) If f is R-integrable on [a, b], then f? is also R—integrable on [a, b].
Proof: Case (1): f =0
Let m?; = inf {f2(x)|x € [x;_, %1}
M} = sup{f? (%) | x € [x;-1, %]}
R(f%,p) = R(f2,p) = X (M?; — m? )Ax; = T, (M; — m)(M; +
m)Ax; < Y7 (M; — m;)2MAx; = 2M Y% (M; — m)Ax; =
2M X M; — Y=y my]
2M (R(f,p) = R(f,p)) <2M == ¢
~ f? is R-integrable on [a, b]
Case (2): f <0
v f <0=|f| >0 = |f]| is R-integrable on [a, b]
= |f]? = f? = f? is R-integrable on [a, b]

(7) If f and h are R-integrable on [a, b] , then fh is also R-integrable on
[a, b].

Proof: .- f and h are R-integrable on [a, b] then
f + his R-integrable on [a, b] .
(f + h)? and f%and h? are R-integrable on [a, b]

%(f + h)? —% f2- %hz = fhis R-integrable on [a, b]
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(8) If f is R-integrable on [a,bland 0 < m < f < M then % is R-
integrable on [a, b].

Proof: - f is R-integrable on [a, b] = Ve > 0,3 a partitionon p s.t

R(f,p) —R(f,p) < e = I, (M; —m)Ax; < €

m<f <M= fisbounded = — <]1c< =>% is bounded

(=) A = 2 1(’”‘ MY STIL (M) Ax; =

m;

1 n (1 —)A 1

% is R-integrable on [a, b].

(9) If f and g are R-integrable, then

(17 78] <[ 52 72|52 9°] (Cauchy Schwarz inequaity)

Proof: Take At?+2Bt+C >0, Vt

LetB = [ fgandA= [ f?andC = [ g°

[ ra) =[] [ 6%] = 0

INOEINE IS

0O [12¢+ ] = [ £2] + [12 6°]F (Minkowsid nequatiy)
Proof: Since [[(f +9)% = [, f2+2 ], fg +f, g°

<[ f*+2 [fffz]% [ffgz]% + 7 g°

192

o]

P+ 2 < |17 2+ |1 o2

e
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6.5 Riemann Stieltjes Integral (Obas calaia Jals)
Definition 6.23: Let f:[a, b] = R be a bounded function and

Let g: [a, b] — R be not decreasing function and

Let p ={a = xg, %1, X2, e, Xy—1, Xy -0r» Xp—1X, = b} be a partition on
la, b]

RS(f,p,9) = T M;[g(x;) — g(x;_1)]
RS(f,p,9) = Xieimilg(x;) — g(xi-1)]
Where m; = inf{f () | x € [x;_y, 1}

M; = sup{f (x) | x € [x;_1, %]}

=+ g is not decreasing = g(x;) — g(x;_1) =0 Vi
&(f;p;g) < R_S(f,p,g)

Let f: fdg = sup{RS(f, p, g) | p is a partition on [a, b]}
f(f fdg = inf{RS(f, p, g) | p is a partition on [a, b]}

b b
= J, fdg <, fdg

If ff fdg = fffdg = f is R-integrable w.rt. g and is denoted by
[7 fdg.

Remarks 6.24: If p* is a refinement of p ,then

(1) RS(f,p,9) <RS(f,p", 9)

RS(f,p",9) < RS(f.p,9)

(2) If p; and p, are a partition of [a, b], then

RS(f,p1,9) < RS(f,p2,9)

(3) If p = {a, b}, then
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RS(f,p,g) = mlg(b) — g(a)]

RS(f,p,9) = Mlg(b) — g(a)].



