Example 4:

An upright image is formed 30 cm from the real object by using the spherical mirror. The height of image is twice the height of object.

- a. Where should the mirror be placed relative to the object?
- b. Calculate the radius of curvature of the mirror and describe the type of mirror required.

Solution: $h_i = 2h_o$ Spherical $u \xrightarrow{\text{mirror}} v \xrightarrow{Q} 30 \text{ cm} = I$

a. From the figure above,

$$u + |v| = 30 \text{ cm}$$
 (1)

By using the equation of linear magnification, thus

$$M = \frac{h_i}{h_o} = -\frac{v}{u}$$

$$v = -2u$$
 (2)

By substituting eq. (2) into eq. (1), hence

$$u = 10 cm$$

The mirror should be placed 10 cm in front of the object.

b. By using the equation of spherical mirror,

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$$

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{(-2u)}$$

$$f = +20 \text{ cm}$$

 $f = +20 \ cm$ and $f = \frac{r}{2}$ therefore $r = 40 \ cm$

The type of spherical mirror is **concave** because the positive value of focal length.

Example 5:

A mirror on the passenger side of your car is convex and has a radius of curvature 20.0 cm. Another car is seen in this side mirror and is 11.0 m behind the mirror. If this car is 1.5 m tall, calculate the height of the car image. (Similar to No. 34.66, pg. 1333, University Physics with Modern Physics, 11th edition, Young & Freedman.)

Solution: h_o =1.5x10 2 cm, r=-20.0 cm, u=+11.0x10 2 cm By applying the equation of spherical mirror,

$$\frac{1}{f} = \frac{1}{u} + \frac{1}{v} \quad \text{and} \quad f = \frac{r}{2}$$

$$\frac{2}{r} = \frac{1}{u} + \frac{1}{v}$$

$$v = -9.91 \text{ cm}$$

From equation of linear magnification,

$$M = \frac{h_i}{h_o} = -\frac{v}{u}$$

$$h_i = -\left(\frac{v}{u}\right)h_o$$

$$h_i = 1.35 \text{ cm}$$

31

Example 6: (H.W.)

- a. A concave mirror forms an inverted image four times larger than the object. Find the focal length of the mirror, assuming the distance between object and image is 0.600 m.
- A convex mirror forms a virtual image half the size of the object.
 Assuming the distance between image and object is 20.0 cm, determine the radius of curvature of the mirror.

Ans.: 160 mm, -267 mm