- Radius of curvature, r
 - is defined as the radius of the sphere of which a curved mirror forms a part.
- Pole or vertex (point P)
 - is defined as the point at the centre of the mirror.
- Principal axis
 - is defined as the straight line through the centre of curvature C and pole P of the mirror.
- AB is called the aperture of the mirror.

1.2.2.Focal point (F) and Focal length (f):

 Consider the ray diagram for concave and convex mirror as shown in figures below.

- From the figures,
 - Point F represents the focal point or focus of the mirrors.
 - Distance f represents the focal length of the mirrors.
 - The parallel incident rays represent the object infinitely far away from the spherical mirror e.g. the sun.
- Focal point or focus. F
 - for concave mirror is defined as a point where the incident parallel rays converge after reflection on the mirror.
 - Its focal point is real (principal).
 - for convex mirror is defined as a point where the incident parallel rays seem to diverge from a point behind the mirror after reflection.
 - Its focal point is virtual.
- Focal length, f
 - Definition is defined as the distance between the focal point (focus) F and pole P of the spherical mirror.
- The paraxial rays is defined as the rays that are near to and almost parallel to the principal axis.

2.2.2.Relationship Between focal length(f) and radius of curvature (r)

Consider a ray AB parallel to the principal axis of concave mirror as shown in figure below. incident ray

$$\triangle \text{BCD} \implies \tan i = \frac{BD}{CD} \approx i$$

$$\triangle \text{BFD} \implies \tan \theta = \frac{BD}{FD} \approx \theta$$
 Taken the angles are << small by considering the ray AB is paraxial ray.

By using an isosceles triangle CBF, thus the angle θ is given by

$$\theta = 2i$$

then

$$\frac{BD}{FD} = 2\left(\frac{BD}{CD}\right)$$
$$CD = 2FD$$

Because of AB is paraxial ray, thus point B is too close with pole P then

$$CD \approx CP = r$$

 $FD \approx FP = f$

Therefore

or
$$f = \frac{r}{2}$$
This relationship also valid for convex mirror.

3.2.Ray Diagrams for spherical mirrors

- Definition is defined as the simple graphical method to indicate the positions of the object and image in a system of mirrors or lenses.
- Ray diagrams below showing the graphical method of locating an image formed by concave and convex mirror.

(a) Concave mirror

At least any two rays for drawing the ray diagram.

- Ray 1 Parallel to principal axis, after reflection, passes through the focal point (focus) F of a concave mirror or appears to come from the focal point F of a convex mirror.
- Ray 2 Passes or directed towards focal point F reflected parallel to principal axis.
- Ray 3 Passes or directed towards centre of curvature C, reflected back along the same path.

4.2. Images formed by a convex mirrors

 Ray diagrams below showing the graphical method of locating an image formed by a convex mirror.

- Properties of image formed are
 - virtual
 - upright
 - diminished (smaller than the object)
 - formed at the back of the mirror
- Object position → any position in front of the convex mirror.