Example 2:

A light beam travels at 1.94 x 108 m s-1 in quartz. The wavelength of the light in quartz is 355 nm.

- a. Find the index of refraction of quartz at this wavelength.
- b. If this same light travels through air, what is its wavelength there? (Given the speed of light in vacuum, c = 3.00 x 108 m s⁻¹)

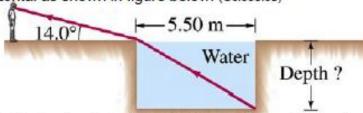
No. 33.3, pg. 1278, University Physics with Modern Physics, 11th edition, Young & Freedman.

Solution: $v=1.94 \times 10^8 \text{ m s}^{-1}$, $\lambda=355 \times 10^{-9} \text{ m}$

a. By applying the equation of absolute refractive index, hence

$$n = \frac{c}{v}$$
$$n = 1.55$$

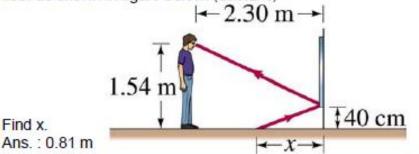
b. By using the equation below, thus


$$n = \frac{\lambda_0}{\lambda}$$

$$\lambda_0 = n\lambda$$

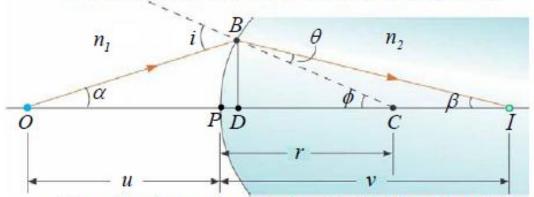
$$\lambda_0 = 5.50 \times 10^{-7} \, m \, @ 550 \, nm$$

Example 3 : (H.W)


We wish to determine the depth of a swimming pool filled with water by measuring the width (x = 5.50 m) and then noting that the bottom edge of the pool is just visible at an angle of 14.0° above the horizontal as shown in figure below. (Gc.835.60)

Calculate the depth of the pool. (Given $n_{water} = 1.33$ and $n_{air} = 1.00$) Ans.: 5.16 m

Example 4 : (H.W)


A person whose eyes are 1.54 m above the floor stands 2.30 m in front of a vertical plane mirror whose bottom edge is 40 cm above the floor as shown in figure below. (Gc.832.10)

15

1.2. Refraction of Spherical Surfaces

 Figure below shows a spherical surface with radius, r forms an interface between two media with refractive indices n₁ and n₂.

- The surface forms an image I of a point object O as shown in figure above.
- The incident ray OB making an angle i with the normal and is refracted to ray BI making an angle θ where n₁ < n₂.
- Point C is the centre of curvature of the spherical surface and BC is normal.
- From the figure,

$$\triangle BOC \implies i = \alpha + \phi$$
 -----(1)

$$\triangle BIC \implies \phi = \beta + \theta$$

 $\theta = \phi - \beta$ -----(2)

From the Snell's law

$$n_1 \sin i = n_2 \sin \theta$$

By using $\triangle BOD$, $\triangle BCD$ and $\triangle BID$ thus

$$\tan \alpha = \frac{BD}{OD}; \tan \phi = \frac{BD}{CD}; \tan \beta = \frac{BD}{ID}$$

By considering point B very close to the pole P, hence

$$\sin i \approx i$$
; $\sin \theta \approx \theta$; $\tan \alpha \approx \alpha$; $\tan \phi \approx \phi$; $\tan \beta \approx \beta$

$$OD \approx OP = u$$
; $CD \approx CP = r$; $ID \approx IP = v$

then Snell's law can be written as

$$n_1 i = n_2 \theta$$
 ----(3)

By substituting eq. (1) and (2) into eq. (3), thus

$$n_1(\alpha + \phi) = n_2(\phi - \beta)$$

$$n_1\alpha + n_2\beta = (n_2 - n_1)\phi$$

then

$$n_1 \left(\frac{BD}{u}\right) + n_2 \left(\frac{BD}{v}\right) = (n_2 - n_1) \left(\frac{BD}{r}\right)$$

CHAPTER ONE REFRACTION

$$\frac{n_1}{u} + \frac{n_2}{v} = \frac{(n_2 - n_1)}{r}$$
Equation of spherical refracting surface

where

v:image distance from pole u: object distance from pole

 n_1 : refractive index of medium 1

(Medium containing the incident ray)

 n_2 : refractive index of medium 2

(Medium containing the refracted ray)

Note:

If the refraction surface is flat (plane):

$$r = \infty$$
 then $\frac{n_1}{u} + \frac{n_2}{v} = 0$

 The equation (formula) of linear magnification for refraction by the spherical surface is given by

$$M = \frac{h_i}{h_o} = -\frac{n_1 v}{n_2 u}$$

Sign convention for refraction :		
Physical Quantity	Positive sign (+)	Negative sign (-)
Object distance, u	Real object (in front of the refracting surface)	Virtual object (at the back of the refracting surface)
Image distance, v	Real image (opposite side of the object)	Virtual image (same side of the object)
Focal length, f	Convex surface	Concave surface
Radius of curvature, r	Convex surface	Concave surface
Linear magnification, M	Upright (erect) image	Inverted image